

 Navigation

 	
 index

 	
 next |

 	redtrine 0.1 documentation

Redtrine documentation

Welcome to the official documentation of the Redtrine project.

Redtrine is a high-level Redis library for PHP.

It aims to provide a clear interface to implement most of Redis cookbooks in an
easy way using Redtrine Structures.

Redtrine is inspired by Redback, a high-level Redis library for Node.JS and its
name is also inspired by Doctrine, an ORM that provides transparent persistence
for PHP objects.

Getting started

Here we should provide some documentation on some easy use cases (for instance
Cache, Queue, ...) with a toctree, etc...

Structures

Want to see all Structures supported by Redtrine? There’s a tutorial for each one.

	Cache

	KeyPair

	Queue

Cookbook

Same as getting started, some cookbooks easily solved, toctree, etc...

 Copyright 2013, Ronny López, Marcos Quesada, Ricard Clau.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	redtrine 0.1 documentation

Cache

Cache structure makes it easy to use Redis as a cache backend.

You can set an optional expiration time in seconds.

This is an example on how to cache some database records for 1 minute.

use Redtrine\Structure\Cache;

// ...
$someDatabaseRecords = ...

$databaseCache = new Cache('cachedRecords');
$databaseCache->set(json_encode($someDatabaseRecords), 60);

// and to retrieve cached data in another HTTP Request
$databaseCache = new Cache('cachedRecords');
$cachedRecords = $databaseCache->get();

 Copyright 2013, Ronny López, Marcos Quesada, Ricard Clau.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	redtrine 0.1 documentation

KeyPair

The KeyPair is a structure where unique values are assigned an ID.

You can think about this as a table with a primary auto-increment key and a single unique column.

Internally, the KeyPair uses two Redis hashes to provide O(1) lookup by both ID and value.
It also uses a Redis key to store auto-increment counter.

	Redis Structure:

	
	(namespace:)key = hash(id => value)

	(namespace:)key:ids = hash(value => id)

	(namespace:)key:autoinc = integer

use Redtrine\Structure\KeyPair;

$redisTable = new KeyPair('redisTable');
$redisTable->add('a');
$redisTable->add('b');
$redisTable->add('c');

// At this moment we have an structure like {"1":"a", "2":"b", "3":"c"}
// And we can perform queries by id, value, delete by id and value, etc...

$values = $redisTable->getById(array(1, 2)); // $values is array('a', 'b')

$id = $redisTable->get('a'); // $id is 1

// These 2 expressions would be equivalent in terms of structure
$redisTable->delete('b');
$redisTable->deleteById(2);

 Copyright 2013, Ronny López, Marcos Quesada, Ricard Clau.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	redtrine 0.1 documentation

Queue

Queue structure makes it easy to use Redis as a queue.

Queues can be defined as FIFO or LIFO via a constructor argument.

You can add elements to the Queue with the enqueue method and extract elements
from it with the dequeue method.

You can also send some elements to another Queues. This can be useful for instance
if some records need to be processed with a different priority.

This is an example about how to send data to a Redis queue and consume it somewhere else

use Redtrine\Structure\Queue;

// ...
$processData = // ... some data to start a process

$processQueue = new Queue('process');
$processQueue->enqueue($processData);

// ... somewhere else in the code there should be a Queue consumer

$processQueue = new Queue('process');
$processData = $processQueue->dequeue();

// ... run a process with $processData

And this is an example about how to send data from one Queue to another

use Redtrine\Structure\Queue;

// ...
$processData = // ... some data to start a process

$processQueue = new Queue('process');
$processQueue->enqueue($processData);

// And we decide to move some queued data to a higher priority queue
$betterQueue = new Queue('highpriority');
$processQueue->dequeueEnqueue($betterQueue);

 Copyright 2013, Ronny López, Marcos Quesada, Ricard Clau.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	redtrine 0.1 documentation

Index

 Copyright 2013, Ronny López, Marcos Quesada, Ricard Clau.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		redtrine 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Ronny López, Marcos Quesada, Ricard Clau.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

