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Redtrine documentation

Welcome to the official documentation of the Redtrine project.

Redtrine is a high-level Redis library for PHP.

It aims to provide a clear interface to implement most of Redis cookbooks in an
easy way using Redtrine Structures.

Redtrine is inspired by Redback, a high-level Redis library for Node.JS and its
name is also inspired by Doctrine, an ORM that provides transparent persistence
for PHP objects.


Getting started

Here we should provide some documentation on some easy use cases (for instance
Cache, Queue, ...) with a toctree, etc...




Structures

Want to see all Structures supported by Redtrine? There’s a tutorial for each one.



	Cache

	KeyPair

	Queue








Cookbook

Same as getting started, some cookbooks easily solved, toctree, etc...
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Cache

Cache structure makes it easy to use Redis as a cache backend.

You can set an optional expiration time in seconds.

This is an example on how to cache some database records for 1 minute.

use Redtrine\Structure\Cache;

// ...
$someDatabaseRecords = ...

$databaseCache = new Cache('cachedRecords');
$databaseCache->set(json_encode($someDatabaseRecords), 60);

// and to retrieve cached data in another HTTP Request
$databaseCache = new Cache('cachedRecords');
$cachedRecords = $databaseCache->get();
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KeyPair

The KeyPair is a structure where unique values are assigned an ID.

You can think about this as a table with a primary auto-increment key and a single unique column.

Internally, the KeyPair uses two Redis hashes to provide O(1) lookup by both ID and value.
It also uses a Redis key to store auto-increment counter.


	Redis Structure:

	
	(namespace:)key     = hash(id => value)

	(namespace:)key:ids = hash(value => id)

	(namespace:)key:autoinc = integer







use Redtrine\Structure\KeyPair;

$redisTable = new KeyPair('redisTable');
$redisTable->add('a');
$redisTable->add('b');
$redisTable->add('c');

// At this moment we have an structure like {"1":"a", "2":"b", "3":"c"}
// And we can perform queries by id, value, delete by id and value, etc...

$values = $redisTable->getById(array(1, 2)); // $values is array('a', 'b')

$id = $redisTable->get('a'); // $id is 1

// These 2 expressions would be equivalent in terms of structure
$redisTable->delete('b');
$redisTable->deleteById(2);
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Queue

Queue structure makes it easy to use Redis as a queue.

Queues can be defined as FIFO or LIFO via a constructor argument.

You can add elements to the Queue with the enqueue method and extract elements
from it with the dequeue method.

You can also send some elements to another Queues. This can be useful for instance
if some records need to be processed with a different priority.

This is an example about how to send data to a Redis queue and consume it somewhere else

use Redtrine\Structure\Queue;

// ...
$processData = // ... some data to start a process

$processQueue = new Queue('process');
$processQueue->enqueue($processData);


// ... somewhere else in the code there should be a Queue consumer

$processQueue = new Queue('process');
$processData = $processQueue->dequeue();

// ... run a process with $processData





And this is an example about how to send data from one Queue to another

use Redtrine\Structure\Queue;

// ...
$processData = // ... some data to start a process

$processQueue = new Queue('process');
$processQueue->enqueue($processData);

// And we decide to move some queued data to a higher priority queue
$betterQueue = new Queue('highpriority');
$processQueue->dequeueEnqueue($betterQueue);
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