
redtrine Documentation
Release 0.1

Ronny López, Marcos Quesada, Ricard Clau

September 22, 2013

CONTENTS

i

ii

redtrine Documentation, Release 0.1

Welcome to the official documentation of the Redtrine project.

Redtrine is a high-level Redis library for PHP.

It aims to provide a clear interface to implement most of Redis cookbooks in an easy way using Redtrine Structures.

Redtrine is inspired by Redback, a high-level Redis library for Node.JS and its name is also inspired by Doctrine, an
ORM that provides transparent persistence for PHP objects.

CONTENTS 1

redtrine Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Here we should provide some documentation on some easy use cases (for instance Cache, Queue, ...) with a toctree,
etc...

3

redtrine Documentation, Release 0.1

4 Chapter 1. Getting started

CHAPTER

TWO

STRUCTURES

Want to see all Structures supported by Redtrine? There’s a tutorial for each one.

2.1 Cache

Cache structure makes it easy to use Redis as a cache backend.

You can set an optional expiration time in seconds.

This is an example on how to cache some database records for 1 minute.

use Redtrine\Structure\Cache;

// ...
$someDatabaseRecords = ...

$databaseCache = new Cache(’cachedRecords’);
$databaseCache->set(json_encode($someDatabaseRecords), 60);

// and to retrieve cached data in another HTTP Request
$databaseCache = new Cache(’cachedRecords’);
$cachedRecords = $databaseCache->get();

2.2 KeyPair

The KeyPair is a structure where unique values are assigned an ID.

You can think about this as a table with a primary auto-increment key and a single unique column.

Internally, the KeyPair uses two Redis hashes to provide O(1) lookup by both ID and value. It also uses a Redis key to
store auto-increment counter.

Redis Structure:

• (namespace:)key = hash(id => value)

• (namespace:)key:ids = hash(value => id)

• (namespace:)key:autoinc = integer

use Redtrine\Structure\KeyPair;

$redisTable = new KeyPair(’redisTable’);

5

redtrine Documentation, Release 0.1

$redisTable->add(’a’);
$redisTable->add(’b’);
$redisTable->add(’c’);

// At this moment we have an structure like {"1":"a", "2":"b", "3":"c"}
// And we can perform queries by id, value, delete by id and value, etc...

$values = $redisTable->getById(array(1, 2)); // $values is array(’a’, ’b’)

$id = $redisTable->get(’a’); // $id is 1

// These 2 expressions would be equivalent in terms of structure
$redisTable->delete(’b’);
$redisTable->deleteById(2);

2.3 Queue

Queue structure makes it easy to use Redis as a queue.

Queues can be defined as FIFO or LIFO via a constructor argument.

You can add elements to the Queue with the enqueue method and extract elements from it with the dequeue method.

You can also send some elements to another Queues. This can be useful for instance if some records need to be
processed with a different priority.

This is an example about how to send data to a Redis queue and consume it somewhere else

use Redtrine\Structure\Queue;

// ...
$processData = // ... some data to start a process

$processQueue = new Queue(’process’);
$processQueue->enqueue($processData);

// ... somewhere else in the code there should be a Queue consumer

$processQueue = new Queue(’process’);
$processData = $processQueue->dequeue();

// ... run a process with $processData

And this is an example about how to send data from one Queue to another

use Redtrine\Structure\Queue;

// ...
$processData = // ... some data to start a process

$processQueue = new Queue(’process’);
$processQueue->enqueue($processData);

// And we decide to move some queued data to a higher priority queue
$betterQueue = new Queue(’highpriority’);
$processQueue->dequeueEnqueue($betterQueue);

6 Chapter 2. Structures

CHAPTER

THREE

COOKBOOK

Same as getting started, some cookbooks easily solved, toctree, etc...

7

